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A similarity solution is found which describes the flow impinging on a flat wall at  
an arbitrary angle of incidence. The technique is similar to a method used by Jeffery 
(1915) and discussed more recently by Peregrine (1981). 

1. Introduction 
Exact solutions of the Navier-Stokes equation are exceptionally rare in fluid 

mechanics because ofthe analytic difficulties associated with nonlinear boundary-value 
problems. One of the primary difficulties rests in the fact that nonlinear problems 
do not admit a superposition principle, thereby ruling out the building up of 
complicated solutions from simple ones. This severely restricts our scope to problems 
having particularly simple geometries for which a similarity solution exists. 

One of the few flows which admits a similarity solution is two-dimensional 
stagnation-point flow. The solution was first proposed by Blasius (1908) and the 
resulting differential equation was integrated by Hiemenz (191 1). The numerical work 
was later improved by Howarth (1935). The solution is sketched here for future 
reference. 

We assume that the fluid is incompressible and the flow steady. The governing 
equations are given by v*q = 0, (1.1) 

1 

P 
(q*V)q = -- vp+ vv2q,  

where q(x,y), p(x,y), p, v are respectively fluid velocity, pressure, density and 
viscosity, the latter two being constants. 

Equation (1 .l) is satisfied identically by the introduction of a stream function 

(1  *3) 

After substituting (1.3) into (1.2) and then taking the curl to eliminate the pressure 
term, we obtain the vorticity-transport equation 

$(x, y) defined by 
q(x, Y) = v x [$(x, Y) LI. 

In stagnation-point flow a rigid wall occupies the entire x-axis and the fluid domain 
is y > 0. The boundary conditions on q(x, y) are 
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where B has units of inverse time. If the variables (2, y)  and 1Cr are non-dimensionalized 
using (v//3)+ and v respectively, the scaled vorticity-transport equation is identical 
with (1.4) except that the viscosity coefficient is missing from the left side of the 
equation. The non-dimensional boundary conditions are given by 

Blasius showed that the solution to this problem was of the form 

$4.9 Y) = ZF(Y). (1.7) 

The boundary-value problem for F(y) obtained by substituting (1.7) into the 
governing equation is, after one integration, 

1 F”’(y)+F(y) F ( y )  -F(y)2  = - 1 

F(0)  = F’(0) = 0, 

F ( m )  = 1. 

From a numerical solution recorded by Goldstein (1964, we observe that, for small y, 

F ( Y )  = acy2-iy3+0(Y5), (1.9) 

where C = 1.232588. 
The asymptotic behaviour for large y is given by 

(1.10) 

where A = 0.647900. 

2. Non-orthogonal stagnation-point flow 
A number of exact solutions to the Navier-Stokes equation are known for which 

the nonlinear convective terms vanish identically. One of these is linear shear flow 
along a flat wall whose stream function is given by 

$%Y) = w. (2.1) 

In a very real sense this flow is a kind of orthogonal counterpart to the flow 
mentioned in 5 1. Whereas stagnation-point flow describes the motion of a fluid 
against a flat wall, shear flow describes the motion of the fluid along the wall. This 
leads to an interesting question: is i t  possible to combine these two flows in a way 
which yields a flow impinging on the wall at  some angle of incidence ? The nonlinearity 
of the governing equations clearly forbids a linear combination of the two solutions. 
However a linear combination of the far-field behaviours of the two flows satisfies 
the Navier-Stokes equation exactly as shown below. 

Consider the flow described by 

+(x, y) = h2 cos a + xy sin a 

= & c o s a ( y + 2 x  tana),  (2 .2 )  

where 0 < a < ~ T C  is a parameter. It is trivial to show that this stream function 
satisfies the vorticity-transport equation (1.4) exactly. A sketch of the streamlines 
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FIGURE 1. Streamlines for the flow to which non-orthogonal stagnation-point flow asymptotes. The 
dividing streamline $ = 0 is a straight line with slope rn = - 2 tan a. 

as depicted in figure 1 reveals a kind of non-orthogonal stagnation-point flow in which 
the slope of the dividing streamline is 

rn = -2  tana.  (2.3) 

By regarding.the stream function in (2.2) as the far-field behaviour of a flow impinging 
obliquely on a flat wall, we are led to the following similarity solution for such a flow : 

? . m y )  = S(Y)+3Cf(Y). (2.4) 

We shall refer to f(y) as the normal component of the flow and g(y) as the tangential 
component. Both components must satisfy no-slip conditions at the wall and 
conditions consistent with (2.2) at infinity. 

3. Normal component 
The substitution of (2.4) into the vorticity-transport equation yields fourth-order 

differential equations for the two functions. The equation for f(y) is identical with that 
derived by Blasius and one integration of it yields 

(3.1) 

(3.2) 

The solution of this equation is homologous to that of Hiemenz. This is shown by 
assuming a solution of the form 

where a is a constant of homology and F ( y )  is defined by (1.8). The substitution of 
(3.2) into (3.1) reveals that 

I f”(y) +f(y)f “(y) -f(y)’+ sin2 a = 0, 

f(0) =f (O)  = 0, 

f ( m )  = sina. 

f ( Y )  = a F ( 4  

a = (sina)t. (3.3) 

A check of the boundary conditions yields the following results : 

I f(0) = aF(0) = 0, 

f(0) = a’F’(0) = 0, 

f ( m )  = a2F’(m) = a2 = sina. 

(3.4) 

Thusf(y) as defined in (3.2) and (3.3) satisfies (3.1). It follows that, for small y, 

f(y) = v(sina)ty2--fsin2a y3+0(y5). (3.5) 
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The asymptotic behaviour of f(y) for large y is given by 

f(y ) - y sin a- A(sin a)$ + exponentially small terms. (3.6) 

When the parameter a = in, we have f(y) = F(y) and orthogonal stagnation-point 
flow is recovered. I n  the limiting case a = 0, the component f(y) vanishes identically. 
The case a = occurs in the problem of flow through a linearly constricted channel 
as considered by Smith (1976). 

4. Tangential component 

linear and is given by 
The corresponding boundary-value problem for the tangential component g(y) is 

(4.1 ) I giv(Y) + f ( Y )  S”’(Y) -f”(Y) 9’(Y) = 0, 

g ( 0 )  = g’(0) = 0, 

g”(a0) = cosa. 

As in the previous case this equation can be integrated once. The asymptotic 
behaviours of f(y) and g(y) for large y are used to determine the constant of 
integration. The resulting third-order equation is 

(4.2) 

When the parameter a = in, both the equation and its boundary conditions become 
homogeneous. The solution therefore is the trivial one. On the other hand the limiting 
case a = 0 sees all terms in (4.2) vanishing except for the third derivative. The 
solution which corresponds to  the boundary conditions in (4.1) is the original linear 
shear flow given in (2.1). 

The solution for general a is accomplished using two transformations. In  the first 
we let 

and thereby reduce the order of the equation. The problem for h ( y )  is given by 

g”’(y) +f (y) g”(y) -f(y) g’(y) = -&in a); cot3 a,  

9’(Y) = h(y) COSa7 (4.3) 

(4.4) I h”(y) +fW h‘(y) --fM h(y) = -&in 4 4  
h(0) = 0, 

h’(a0) = 1. 

Equation (4.4) can be cleansed of its dependence on a using the substitutions 

where a = (sina)t and P(y) is Hiemenz’s function. Introducing a new independent 
variable z = ay, we have 

(4.6) I H”(z )+F(z )H’ ( z ) -P’ ( z )H(z )  = -A, 

H ( 0 )  = 0, 

H’(a0) = 1. 

Two observations can be made which enable us to solve this equation exactly. First, 
the function AF’(x) is a particular solution of the equation and, secondly, F”(z) is a 
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solution of the corresponding homogeneous problem. Reduction of order is used to 
generate the second fundamental solution of the homogeneous equation and in this 
way the general solution of (4.6) is pieced together. Unfortunately substantial 
difficulties are encountered in satisfying the boundary condition at  infinity and it is 
much easier to integrate (4.6) numerically using a shooting method to satisfy the 
far-field condition. This yields the result 

(4.7) 

We can now use (4.7) in place of the condition at  infinity and solve (4.6) as an 
initial-value problem. The closed-form solution for H ( z )  so obtained is 

H’(0) = 1.406544 = D. 

H ( z )  = AB’(z)+C(D-AAC)Ii”’(z)~ 0 w(t)dt, 

where w(t) = F”(t)-z exp 

For large z, the behaviour of H ( z )  is given by 

H ( z )  w z+O((z-A)-zln ( % - A )  exp[-+(~-A)~]}. (4.9) 

It follows from (4.3) and (4.5) that the solution of (4.2) is given by 
ru  

g(y) = a-1 cosaJ H(ay) dy. 
0 

When y is small, we have 

(4.10) 

g(y) = +D cosa y2-+A(sina)i cosa y3+0(y6). (4.11) 

When a + 0, the asymptotic behaviour of g(y) for large y is given by 

g(y) - $Jz cos a + B cot a + exponentially small terms, (4.12) 

where B = 0.215395. 
It was noted earlier that, in the case a = 0, we have g(y) = $Jz. It can be shown, 

however, that, as a+O, all terms in (4.11), except for the first, vanish with the result 

lim g(y) = iDy2. 
a 4  

(4.13) 

This paradox can be explained by examining the structure of the flow when ac is small. 
Equation (4.6) consists of a viscous term, two convection terms and a forcing term. 

The forcing constant can be identified with the convection terms. When a is small, 
the solution to (4.6) consists of three regions: an inner region where z N aiy + 1, a 
transition layer where aiy = O ( l ) ,  and an outer region where aiy % 1. In both the 
inner and outer regions, the viscous term H”(z) dominates the inertial terms and a 
shear flow is obtained: H ( z )  N Dz in the inner region, H ( z )  N z in the outer region. 
In  the transition layer inertial effects are significant and the shear rate is gradually 
changed from its value of D near the wall to its value of 1 far from the wall. As a+O, 
both the transition layer which is located at  y = O(a-i) and the outer region are 
pushed off to infinity leaving simply the shear flow in the inner region which now 
extends from the wall to + 00. Thus the result in (4.13) is obtained. On the other hand 
when a = 0, the convection terms in (4.4) vanish identically and a transition layer 
cannot exist. The outer shear flow is the only one which can satisfy both the boundary 
conditions at the wall and at infinity. The solution g(y) = $Jz corresponding to a = 0 
is therefore a singular limit. 
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FIQURE 2. The dividing streamline $ = 0 meets the wall at X = 0 and has slope m, at that point. 
The ratio of m, to m is the same for all angles of incidence. 

5. Behaviour of the flow near the wall 
The flow near the wall can be analysed by substituting the small-y expansions 

forf(y) and g(y) into (2.4). If we define a new horizontal coordinate X in the following 
way 

D 
C 

x = z+- cosa (sina)-t, (5.1) 

the resulting expansion for the stream function is given by 

$(X,y) =z(z-A)(sina):cosay2 1 D  

-(sina)t t ana  (:-A)-' Xy+O(y3)}. (5.2) 

Recall from $2 that far from the wall the dividing streamline $ = 0 is a straight 
line with slope m = - 2 tan a which if extended would intersect the wall at z = 0. From 
(5.2) we see that in fact the streamline ~ = 0 meets the wall at  X = 0 (see figure 2). 
The distance between these two locations is, from (5.1), 

d = 1.141131(1+k2)~k-~, (5.3) 
where k = 1 I m I. As 1 m I + CXI , orthogonal stagnation-point flow is approached and 
we have d + O .  On the other hand as m + 0, the impinging stream comes into the wall 
more and more obliquely and d + co . If we regard the flow to the left of the dividing 
streamline as a region of separated flow, we see that the effect of an almost tangential 
impinging stream is to push this region of separated flow off to x = - 00. The flow 
in the vicinity of x = 0 then essentially becomes a shear flow parallel to the wall. 

A second truly remarkable result is the value of the slope ms of the dividing 
streamline at,the point X = 0. From (5.2) we see that 

- 3c2 
m, = - tan a. 

D-AC 

Thus the ratio m,lm is found to be 

(5.4) 

1 .5C2 - ms = ~ = 3.748513, 
m D-AC (5.5) 
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which is independent of a! The slope of the dividing streamline $ = 0 a t  the wall 
divided by its slope at infinity is the same for all non-orthogonal stagnation- 
point flows. That these flows are all exact solutions of the Naviel-Stokes equation 
suggests that this constant is somehow intrinsic to the governing equation of fluid 
mechanics. 

The referees are thanked for their suggestions which led to the solution of (4.6). 
I would like to dedicate this paper to the memory of my wife Margaret who passed 

away 3 June 1985. 
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Note added in proof by the author 
As this paper went to press, it was discovered that the problem it concerns has 

already been discussed by Stuart (1959) and Tamada (1979). The results in the three 
papers are consistent. The present paper, unlike the previous two, formulates the 
problem so that the normal and tangential components, f(y) and g(y), depend on the 
angle at which the incident flow impinges on the wall y = 0. As a consequence equation 
(4.2) for g(y) is non-homogeneous while the corresponding equations of Stuart and 
Tamada are homogeneous. That the two formulations are equivalent is brought out 
by the agreement between the solution provided by Stuart in equation (11) of his 
paper and the homogeneous part of my solution as recorded in (4.8). The main 
contributions of the present paper are contained in $5.  These include the point of 
attachment of the dividing streamline as recorded in (5.3) and the existence of a 
universal constant given in (5.5) for this class of flows. 
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